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Abstract Objectives

Automatic speech recognition (ASR) is the process of converting speech signals automatically into text. It can be used The main objectives are reviewing and studying the existing and currentspeech recognizing systems to be able to

in diverse environmentfor different purposes such as in medical records, radio station, etc. Researches in ASR hasbeen master themain steps of ASR. Aswell as to fully comprehend thepreprocessing phase of audio signals, to transform
donefor many years,starting with Hidden Markov Models, Dynamic Time Wrapping, SupportVector Machine and theses audios to valid inputto awell structured Deep Neural Network architecture.

many others, butsince the emergence of Deep Artificial Neural Network (Deep ANN),speech recognition research has And also assimilating  how Deep Neural Networks work and how they perform.

been upgraded.

Deep Learning methods offer significantly lower speech recognition error rates compared to the traditional methods. We

will review the pipelne of ASRfrom sampling audio and feature extraction techniques to the theory and implementation Problem Context

of the Recurrent Neural Networks (RNN) architecture well suited for ASR.
Someofthe problems that weencountered are lack of Data ,the limited processing power of the computer's
MiCroprocessor.

The aim Asmany studies examined theprogress made in implementing voice recognition. There isstill alot to develop for
Arabic language

Showing thesteps of building an automatic speech recognizer using Deep Recurrent Neural Networks
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1-Feature Extraction
Feature extracton helpsreducing input size
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-Mel Frequency Cepstral Coefficients(MFCC) :Itis one Emphasis t "

of hemost dominantmethod to extract cepstral features. It
is based on the known variations of the human ear’s critical

Conclusion

In this paper we reviewed the basics of automatic speech recognition, with all the steps that are crucial for building it

bandwidths with frequencies which are below a 1000 Hz. First step is sampling then feature extraction and then feed our inputsinto an LSTM.

First we Frame thesignal into shortframes.For each frame Wecan say that building a speech recognizer is notsimple work for mostly lack of Data, that leads to low

we create theit magnitudespectrum. Then weapply themel Magnitude performanceand accuracy of the Deep Neural Architecture.

filterbank to the power spectra,Take the logarithm of all Mel Spectrum B . L .
filerbank energies. Take the DCT of the log filterbank Output Dettabnergy |spectrum | oo Mel | MelFilter Asa futurework, we intend to implement more RNN models as well ascombining these models for abetter audio
energies. Then weobtain MFCC vectors. and Spectrum Spectrum|  Bank processing results. Gather as much data aspossible .

-Linear predictive coding(LPC) :The basic idea behind

LPC analysis isthat aspeech sample can be approximated Input "
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